Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(5): R189-R190, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38471443

RESUMEN

The world-renowned pollination system of the long-spurred orchid Angraecum sesquipedale Thouars and the long-tongued hawkmoth Xanthopan praedicta (Rothschild & Jordan, 1903), from Madagascar, is the best-known example of the predictive power of evolutionary ecology1,2, yet its actual degree of specialisation remains poorly described due to the incompleteness of the pollination record of X. praedicta. Here, we describe another species from Madagascar, an angraecoid orchid distantly related to the genus Angraecum Bory, that has evolved these extreme adaptations to a single pollinator after a pollinator shift. It bears the longest spur of any flowering plant, relative to flower diameter, reaching 33 cm. The discovery of a species with such an exceptionally long spur is a rare event, the most recent dating to 19653. This novelty is described here as Solenangis impraedicta (Figure 1A-F) and discussed in a phylogenetic framework. Its conservation status is assessed as Endangered.


Asunto(s)
Lepidópteros , Orchidaceae , Animales , Polinización , Filogenia , Madagascar , Evolución Biológica , Flores
2.
Biodivers Data J ; 11: e106223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318515

RESUMEN

INTRODUCTION: In recent decades, Madagascar has become one of the most important plant hotspots in the world. The country's remaining forests and vegetation are disappearing at an alarming rate, while dozens of new species are discovered each year. Amongst the plant families that have long been studied, Orchidaceae appear as one of the most charismatic, diverse and of high conservation concern. Based on a reviewed, comprehensive herbarium dataset, we have compiled a curated checklist of all orchid species occurring in Madagascar. Based on this complete dataset, we then compiled sampling effort, species diversity distribution and some general statistics on their ecology and IUCN conservation status. METHODS: We compiled and standardised a global dataset using five public databases as the main data sources, supplemented by the most recent publications. The database contains ~ 10,000 geolocated records collected between 1816 and 2021. We used GIS software and rarefaction methods to examine sampling and diversity patterns. RESULTS: According to our dataset, there are currently 913 orchid species collected in Madagascar, of which 759 orchid species (83.1%) are endemic. Doubling the sampling effort could lead to the discovery of around 100 more species, bringing the total estimated number of orchid species in Madagascar to between 986 and 1048. About one-third (297 species) of all orchid species are known only by type specimens (189 species) or have not been collected in Madagascar for more than 50 years (214 species). Although the raw data show that the Andasibe-Moramanga area would have the highest orchid species concentration, our analysis of the data, adjusted for bias, shows that the centres of orchid diversity in Madagascar are in the Tsaratanàna Strict Nature Reserve and the Ranomafana National Park. Life-form statistics show that 55.0% of orchid species are strict epiphytes. The main flowering period of orchids in Madagascar is between November and March. To date, 84% of the 226 Malagasy orchid species listed in the IUCN Red List are threatened with extinction (CR, EN or VU). CONCLUSION: Despite geographically uneven coverage, the biodiversity of Malagasy orchids appears to be already well documented. We provide maps corrected for sampling bias that indicate priority areas for future surveys. Upcoming efforts should also focus on rediscovery and conservation of rare and/or threatened species and ensure that the protected area network is well aligned with the distribution of priority species for conservation. Finally, the conservation status of 75% of the orchid species found in Madagascar is not yet known and the inclusion of these species must be a top priority in the coming years.

3.
Mol Phylogenet Evol ; 159: 107105, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33601026

RESUMEN

Angraecoid orchids present a remarkable diversity of chromosome numbers, which makes them a highly suitable system for exploring the impact of karyotypic changes on cladogenesis, diversification and morphological differentiation. We compiled an annotated cytotaxonomic checklist for 126 species of Angraecinae, which was utilised to reconstruct chromosomal evolution using a newly-produced, near-comprehensive phylogenetic tree that includes 245 angraecoid taxa. In tandem with this improved phylogenetic framework, using combined Bayesian, maximum likelihood and parsimony approaches on ITS-1 and five plastid markers, we propose a new cladistic nomenclature for the angraecoids, and we estimate a new timeframe for angraecoid radiation based on a secondary calibration, and calculate diversification rates using a Bayesian approach. Coincident divergence dates between clades with identical geographical distributions in the angraecoids and the pantropical orchid genus Bulbophyllum suggest that the same events may have intervened in the dispersal of these two epiphytic groups between Asia, continental Africa, Madagascar and the Neotropics. The major angraecoid lineages probably began to differentiate in the Middle Miocene, and most genera and species emerged respectively around the Late Miocene-Pliocene boundary and the Pleistocene. Ancestral state reconstruction using maximum likelihood estimation revealed an eventful karyotypic history dominated by descending dysploidy. Karyotypic shifts seem to have paralleled cladogenesis in continental tropical Africa, where approximately 90% of the species have descended from at least one inferred transition from n = 17-18 to n = 25 during the Middle Miocene Climatic Transition, followed by some clade-specific descending and ascending dysploidy from the Late Miocene to the Pleistocene. Conversely, detected polyploidy is restricted to a few species lineages mostly originating during the Pleistocene. No increases in net diversification could be related to chromosome number changes, and the apparent net diversification was found to be highest in Madagascar, where karyotypic stasis predominates. Finally, shifts in chromosome number appear to have paralleled the evolution of rostellum structure, leaflessness, and conspicuous changes in floral colour.


Asunto(s)
Evolución Biológica , Especiación Genética , Cariotipo , Orchidaceae/clasificación , Filogenia , África , Asia , Teorema de Bayes , Funciones de Verosimilitud , Madagascar , Orchidaceae/genética , Filogeografía , Plastidios/genética
4.
Mol Phylogenet Evol ; 126: 241-249, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29673694

RESUMEN

Despite significant progress made in recent years toward developing an infrafamilial classification of Orchidaceae, our understanding of relationships among and within tribal and subtribal groups of epidendroid orchids remains incomplete. To reassess generic delimitation among one group of these epidendroids, the African angraecoids, phylogenetic relationships were inferred from DNA sequence data from three regions, ITS, matK, and the trnL-trnF intergenic spacer, obtained from a broadly representative sample of taxa. Parsimony and Bayesian analyses yielded highly resolved trees that are in clear agreement and show significant support for many key clades within subtribe Angraecinae s.l. Angraecoid orchids comprise two well-supported clades: an African/American group and an Indian Ocean group. Molecular results also support many previously proposed relationships among genera, but also reveal some unexpected relationships. The genera Aerangis, Ancistrorhynchus, Bolusiella, Campylocentrum, Cyrtorchis, Dendrophylax, Eurychone, Microcoelia, Nephrangis, Podangis and Solenangis are all shown to be monophyletic, but Angraecopsis, Diaphananthe and Margelliantha are polyphyletic. Diaphananthe forms three well-supported clades, one of which might represent a new genus, and Rhipidoglossum is paraphyletic with respect to Cribbia and Rhaesteria, and also includes taxa currently assigned to Margelliantha. Tridactyle too is paraphyletic as Eggelingia is embedded within it. The large genus Angraecum is confirmed to be polyphyletic and several groups will have to be recognized as separate genera, including sections Dolabrifolia and Hadrangis. The recently segregated genus Pectinariella (previously recognized as A. sect. Pectinaria) is polyphyletic and its Continental African species will have to be removed. Similarly, some of the species recently transferred to Angraecoides that were previously placed in Angraecum sects. Afrangraecum and Conchoglossum will have to be moved and described as a new genus.


Asunto(s)
Orchidaceae/clasificación , Filogenia , Teorema de Bayes , ADN de Plantas/genética , Océano Índico , Orchidaceae/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...